

Estimation of Future Water Status through Water Balance Analysis

- I. Project Overview
- II. Status Survey
- III. Analysis of Water Resources in Chao Phraya Basin
- IV. Additional Water Supply Plan

I. Project Overview

01 Outline

02 **Progress Status**

- **Jun.** 02, 2016 Commencement of project
- Jun. 14, 2016 : Inception & 1st consultation workshop(Korea)
- Jun. 17, 2016 : Consultation meeting with RID(Thailand)
- Jul. 14, 2016 : Inception workshop(Thailand)
- Aug. 09, 2016 : Working group meeting(Thailand)
- Oct. 27, 2016 : Interim & 2nd consultation workshop(Korea)
- Dec. 08, 2016 : 1st interim workshop(Thailand)
- Feb. 06, 2017 : 2nd interim workshop(Thailand)
- **E** Feb. 10, 2017 : 3rd consultation meeting(Korea)
- Feb. 23, 2017 : Final draft-meeting(Thailand)

Ⅱ. Status Survey

01 General

7

01 General

General status of Chaophraya basin			
Basin	Chao Phraya river basin		
Area	158,592 km ²		
Sub-basin	8 Sub-basins (Ping, Wang, Yom, Nan, Sakae-Krang Pasak, Thachin, Lower Chaophraya)		
Landuse	Agriculture : 45.2 % Forest : 43.3 % Urban : 6.3% Others : 5.2%		
Total Water resources	173,593 MCM (Yearly Rainfall:1,088.1mm)		
Annual Runoff	35,424 MCM		
Runoff Rate	20.4 %		

02 Climatology

Rainfall & Temperature

Item	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Ann.
Rainfall(mm)	6.2	10.9	33.3	64.2	156.5	124.3	130.0	174.2	220.8	134.2	27.4	6.3	1,088.1
Mean monthly temperature (°C)	24.0	25.6	27.5	28.9	28.2	27.6	27.2	27.0	26.8	26.4	25.1	23.8	26.5

- Tropical monsoon climate characteristic by high temperature and humidity
- 2 distinct season : the wet season (May to October) and the dry season (November to March)

III. Analysis of Water Resources in Chao Phraya Basin

- 1. The Concept of Study
- 2. Available Water Resources
- 3. Water Balance Analysis
- 4. Strategy Setup for additional water supply

01 The Concept of Study

Basic Concept

01

03

Survey and evaluate the available water resources in Chao Phraya river basin

"How much water is available or needed in Chao Phraya river basin?"

➔ Water Balance Assessment : Analyzing water shortage in sub-basin

62
62 "If water shortage happened, How can we supply the additional water?"
→ Planning Water diversion from Mae Klong, Pasak and Salawin river basin

Preliminary Feasibility Study considering the priority of countermeasure projects

- "What is the best project for solving the issue?"
- → Support project implementation with structure-planning with economic analysis index

02 Available Water Resources

Available Water Resources in Chao Phraya Basin

Average annual precipitation & runoff (1986~2015yr)

Basin	Precipitation (mm)	Runoff (MCM)	Runoff Rate (%)
Ping	1,029.7	9,044	25.5
Wang	1,042.3	1,663	14.8
Yom	1,118.2	4,166	15.6
Nan	1,195.9	12,428	29.8
Sakae Krang	1,132.8	1,269	21.0
Pasak	1,117.0	2,921	22.2
Tha Chin	1,045.1	1,437	10.2
Chao Phraya	1,024.1	1,748	8.3
	(Avr.) 1,088.1	(Total) 35,424	20.4

Precipitation data: Historical monthly rainfall records for the recent 30 years (218 stations)

Runoff data: Historical monthly flow records for the recent 30 years (138 stations)

Water Demand of each sub-basin

Rocin	Water Demand (MCM/yr)					
Dasiii	Present	2020	2025	2035		
Ping	3,692.7	3,786.0	3,879.1	4,261.8		
Wang	320.3	392.0	463.4	477.4		
Yom	2,128.2	2,394.0	2,661.1	2,774.1		
Nan	3,807.8	4,259.0	4,710.8	4,930.6		
L. Chao Phraya + Tha Chin	19,342.8	19,968.0	20,591.2	22,296.5		
Sakae Krang	583.0	585.0	585.6	1,188.4		
Pasak	1,388.3	1,456.0	1,524.6	1,720.5		
Total	31,263.0	32,840.0	34,415.8	37,649.3		

Water Demand of each water usage

ltem	Present	2025	2035
Domestic (MCM/yr)	3,271.6	4,395.1	5,910.3
Industrial (MCM/yr)	2,371.1	2,589.3	2,827.6
Agricultural (MCM/yr)	25,305.3	27,057.6	28,419.5
Total (MCM/yr)	30,948.0	34,042.0	37,157.4
River maintenance flow (Station C2, m [*] /s)	175.0	175.0	175.0

WBA (Water Balance Analysis – K-MODSIM*)

* K-MODSIM : River and reservoir system operations simulation and optimization program, developed by Colorado State University and K-water

Water Supply & Demand Analysis (K-MODSIM)

MSG 63.005% -

Result of Water Balance Analysis

Irrigation water

Paoin	Water shortage (MCM/yr)					
Dasiii	Present	2020	2025	2035		
Ping	4.4	7.0	9.6	29.1		
Wang	48.5	54.1	59.6	106.5		
Yom	328.1	549.3	770.4	1,061.9		
Nan	201.3	252.6	303.8	474.9		
L. Chao Phraya + Tha Chin	1,682.2 (57.0%)	1,732.8 (52.4%)	1,783.3 (48.8%)	1,794.0 (41.0%)		
Sakae Krang	397.2	397.7	398.1	543.2		
Pasak	290.9	310.4	329.9	370.7		
Total	2,952.6	3,303.9	3,654.7	4,380.3		

· Calculate water shortage from the Thailand criteria

1. Count water shortage in case the monthly demand at point is 20% excessive than the supply each year

2. Average yearly water shortage for the entire analysis period (30 years)

Irrigation water shortage is found to be most serious in Chao Phraya Basin.

More than 40% of future irrigation water shortage is expected to occur in the Lower Chao Phraya & Tha Chin river basin.

Result of Water Balance Analysis

Oomestic water

Domestic water shortage is found in Lower Chao Phraya & Tha Chin river basin.

Result of Water Balance Analysis

Industrial water

Industrial water shortage is found mainly in Chao Phraya & Tha Chin river basin

Second Water Demand						
Pagin	Water Demand (MCM/yr)					
Dasiri	Present	2020	2025	2035		
Ping	3,692.7	3,786.0	3,879.1	4,261.8		
Wang	320.3	392.0	463.4	477.4		
Yom	2,128.2	2,394.0	2,661.1	2,774.1		
Nan	3,807.8	4,259.0	4,710.8	4,930.6		
L. Chao Phraya + Tha Chin	19,342.8	19,968.0	20,591.2	22,296.5		
Sakae Krang	583.0	585.0	585.6	1,188.4		
Pasak	1,388.3	1,456.0	1,524.6	1,720.5		
Total	31,263.0	32,840.0	34,415.8	37,649.3		

🔘 Water Shortage

Paoin	Water Shortage (MCM/yr)					
DaSin	Present	2020	2025	2035		
Ping	4	7	10	29		
Wang	49	54	60	107		
Yom	328	549	770	1,062		
Nan	201	253	304	475		
L. Chao Phraya + Tha Chin	1,744	1,810	1,877	1,900		
Sakae Krang	397	398	398	543		
Pasak	291	310	330	371		
Total	3,015	3,384	3,736	4,526		

Result of Water Balance Analysis

Water Shortage (MCM)

Water Demand & Shortage in Chao Phraya basin

04 Strategy Setup for additional water supply

Result of Water Balance Analysis : Considering Thai Gov. plan (By RID)							
Pooin	Water Shortage (MCM)		Gov. Pla	n (MCM)	Expected Shortage (MCM)		
Dasiii	2025	2035	2025	2035	2025	2035	
Ping	10	29	170	350	0	0	
Wang	60	107	18	19	42	88	
Yom	770	1,062	193	252	577	810	
Nan	304	475	909	1,276	0	0	
L. Chao Phraya + Tha Chin	1,877	1,900	36	113	1,841	1,787	
Sakae Krang	398	543	70	346	328	198	
Pasak	330	371	0	0	330	371	
Total	3,749	4,487	1,396	2,356	3,118	3,253	

Considering Thai Gov. reservoir plan in the future, the water shortage was re-estimated

- (2025) Water shortage was expected to 3,118 MCM - (2035) Water shortage was expected to 3,253 MCM

Even though considering existing Thai Gov.' s plan of water resources, water shortage is to be expected more than 3 bil.m³

04 Strategy Setup for additional water supply

Strategy to solve the water shortage in Chao Phraya river basin

04 Strategy Setup for additional water supply

Overview of additional water supply plan

After analysis of potential water resources, the plans have studied as for structural and non-structural countermeasures in nearby Chao Phraya river basin

Basin	Structural Plan	Non–Structural Plan
Maeklong river	 New Diversion Weir and Canal or Estuary Weir and Canal 	 Using existing canal Integrated dam operation (SND, VJK) Using inactive storage for extreme drought (700 mil.m3)
Pasak river	 New Reservoir construction Heightening Pasak Dam 	_
Salawin	 * Existing plan is on going by Thai Gov. (Bhumibol dam water resources increasing project) 	by diversion from Salawin basin)

IV. Additional Water Supply Plan

 Development of Water Resources in Mae Klong Basin

2. Conclusion

Water Resources in Mae Klong Basin

🕥 Basin Status & Annual Runoff

Mae Klong Basin is High in the north side and low in the south side in terms of topography, and its river runoff originates in the upper mountainous area and flows into the Gulf of Thailand through lower plains.

 Runoff from the northern mountains areas has been stored in the four dams and it is used to supply required water to downstream plains and Chao Phraya Basin.

Additional Water Resource Development Plans (Mae Klong Basin)

Present Status of Dams

Dam) & EGAT (Other 3 Dams)

A TECHNOLOGIC	ltem	Unit	Vajiralongkorn Dam	Srinagarind Dam
Veffreilonkomg Dam	Location	-	Khawe Noi River (270km northwest of Bangkok)	Khawe Yai River (150km northwest of Bangkok)
	Catchment area	km ²	3,720	10,880
	Annual Inflow	МСМ	5,500 (5,491*)	4,400 (4,605*)
Uthai Tham	Dam type	-	CFRD	ECRD
	Dam height x Length	m	92 x 1,019	140 x 610
Suphan Buri	Dam crest	m MSL	163.0	185.0
Kanchanaburi	Flood Water Level	m MSL	160.4	182.4
	High Water Level	m MSL	155.0	180.0
Man Marra Dam	Lower Water Level	m MSL	135.0	159.0
Nakhon Pathom Nakhon Pathom	Total storage	МСМ	8.860	17,745 (19,825 *)
Retchaburi Ratchaburi Batchaburi	Effective storage	МСМ	5,848	7,470 (7,327 *)
Dame operated & maintained by PID (Mae Klong	Inactive storage	МСМ	3,012	10,275 (10,418 *)

*: Operation Data

29

Basin Diagram & Characteristics

30

- Status of Water Supply

 Maeklong dam supplys water to GMKIP, Thachin river, MWA and river mainternance, by the flow of upper river and released discharge of two dams

Operation Associated With Existing Dams

- Vajiralongkorn Dam(Operation Data, 1985~2015)
- Average Inflow : 5,815 MCM/yr
- Average Water supply : 5,231 MCM/yr

- Srinagarind Dam(Operation Data, 1980~2015)

- Average Inflow : 4,824 MCM/yr
- Average Water supply : 5,081 MCM/yr

- VJR Dam : Annual Water Level 147m MSL, Spillway overflow 3 times.
- SND Dam : Annual Water Level 168m MSL, Spillway overflow 0 times, Inflow through pumping at downstream

Coordinate Operation Study between VJK & SND Dams

Input data	Dam data(from EAGT site) – Inflow, WL & storage, rule curve – generation capacity, tailwater Tributary inflow(from RID) – (VJK) K37 – dam outflow – (SND) K35A – dam outflow	Image: second
Simulation condition	 Period: '02.Jan.1 ~ 15.dec.31(14yrs) Operation rule curve existing rule curve changing rule curve (upper : HWL, lowest : LWL) Control point operation condition existing water supply : 9,800MCM additional water supply potential : + α 	K37 K35A S 500 Junction 5 to Junction 6 100 0 500 Junction 12 - - - - - Junction 12 - - - - - Junction 12 - - - - - - Junction 12 - - - - - - - Junction 12 - - - - - - - Junction 12 -
Additional water supply potential	Simulate for maximum additional water supply potential – review of water shortage – evaluation of additional supply potential	Junction 10 Junction 11 Image: Imag

Review of Additional Water supply Potentinal

Existing Rule Curve

Changing Rule Curve

 The additional water supply potential in the Mae Klong Basin was reviewed to be 2,100 ~ 2,400 MCM. (Using the recent 14-year data)

Storage Allocation of Srinagarind Dam

Inactive storage is 10,418 MCM accounting for approx. 52.5% of total storage capacity 19,825 MCM.
 The water level of Srinagarind dam has operated to maximize generation highly

Securing Additional Storage of Srinagarind Dam

- In the emergency such as extreme drought, Additional capacity can be secured through LWL is lower.
 - (LWL : 159m MSL \rightarrow 157m MSL, Additional Storage : 789 MCM)
- Power generation loss is about 2%.(LWL : 159m MSL, 722GWh \rightarrow 157m MSL, 710GWh).
- <u>* Tha objective of dams should be reviewed to find a best solution of Trade off between water and energy</u>

ltom	Ac	Pomork		
Rem	159m MSL(Current)	157m MSL(-2m)	155m MSL(-4m)	Remain
Total storage(FWL)	19,825	19,825	19,825	FWL 182.4m MSL
Total storage(HWL)	17,745	17,745	17,745	HWL 180.0m MSL
Effective storage	7,327	8,116	8,612	
Additional storage	-	789*	1,285	* Power generation loss 2%
Inactive storage	10,418	9,629	9,133	Dead storage + Emergency storage

Results

- Potential Water Supply were examined → As a results, the potential water supply to be secured additionally at the Mae Klong Basin is reviewed to be 2,100 ~ 2,400MCM
- Water Supply Requirement of Chaophraya Basin : 1,100 MCM
- New Diversion Dam

→ Additional water availability : 400 MCM

Using Existing Canal

- → Additional water availability : 700 MCM
- In the emergency such as extreme drought, Additional capacity can be secured through LWL is lower.
 (LWL : 159m MSL → 157m MSL, Additional Storage : 789 MCM)
- Power generation loss is about 2%.(LWL:159m MSL, 722GWh → 157m MSL, 710GWh).

Lowering of Reservoir Level(Srinagarind Dam)				Facilities Plan(New Diversion Dam)		
	Additional Storage (MCM)			ltom	Specification	Pomork
ltem	Item 159m MSL 157m MSL Remark		opecification	The mark		
	(Current)	(-∠m)		Dam height (m)	13.0	
Total storage(FWL)	19,825	19,825	FWL 182.4m MSL			
Total storage(HWL)	17,745	17,745	HWL 180.0m MSL	Dam length (m)	157.0	
Effective storage	7,327	8,116		Width of diversion channel (m)	18.0	
Additional storage	-	789		Length of diversion channel (km)	71.0	
Inactive storage	10,418	9,629		Design water Diversion (m ³ /s)	12.7	400MCM

Facilities Plan

- Options for securing additional water availability(Comparison Route)

lite ee	Dam	Gate		Diversion Channel	Demode		
Item	Width (m)	No.	Width (m)	Height (m)	Length (km)	Remark	
Diversion Dam	157	10	13.0	6.0	71	Connect to the Mahawawat WTP	
Estuary Weir	600	38	13.0	6.0	75	Connect to the Chao Phraya River	

Facilities Plan

- Design specification of diversion systems

Item			em	Specification	Remark
	Flood V	Vater Level(m MSL)	10.0		
	High V	/ater Level(m MSL)	5.0		
	New Diversion	Low W	/ater Level(m MSL)	2.0	
ף Div ר			No.(EA)	9	Roller gate
Dam	Gate	Width(m)	13.0		
		Height(m)	6.0		
	Na	avigation Lock	22x6, 2EA		
Diversion System	Design v	vater diversion(m ³ /s)	12.7		
	Inlet	elevation(m MSL)	5.0		
	Outlet	elevation(m MSL)	1.0		
	Divers	ion Channel Gate	2x3, 4EA	Roller gate	
	Diversion channel	Length(km)	71.0	Tha Pha \sim WTP	
		Slope(%)	0.0001		

Profile of Diversion Route

Diversion Route (0+000~35+000)

Cross Section (15+000)

Diversion Route (35+000~70+994)

Cross Section (67+000)

- Establishing plan of channel bed slope considered ground elevation of the Mahasawat WTP and diversion dam
- Establishing plan of channel section considered channel capacity and freeboard

Section of Diversion Dam

Section A - A

Section B - B

41

02 Conclusion

Additional water supply plan

0 50 100 200 Kilometers

PASAK	WATER (MCM)
Shortage	(–) 371
RID Plan	-
Exp. Shortage	(–) 371
Water Supply Plan	(+) 476
Surplus Water	(+) 105

BASIN	WATER (MCM)
SALAWIN	(+) 1,700
WANG	(–) 88
YOM	(–) 810
SAKAE KRANG	(–) 198
Sub TOTAL	(+) 604
MAE KLONG	(+) 1,100
PASAK	(+) 105
Sub TOTAL	(+) 2,009
L. C + T. C	(–) 1,787
TOTAL	(+) 22

02 Conclusion

Future Water Shortage

- **Barrow Result of Water Balance Analysis**
 - Expected water shortage in Chao Phraya basin (2035yr): 3,253 MCM
 - T.C+L.C water shortage :1,787 MCM (54.9%)

Additional water supply plan

- Mae Klong basin → Total 1,100MCM (Coordination operation VJK&SND)
 - Structural Plan

New diversion dam

→ Additional water availability : 400 MCM

- Non-Structural Plan

Measure of adjusting the L.W.L of Srinagarind dam → Emergency Storage : 789 MCM

- Salawin basin (Plan of water supply by RID) → Total 1,700 MCM
 - Plan of additional water supply: 1,700 MCM (Salawin to Ping basin)

02 Conclusion

Additional water supply plan

- **Selection of Priority**
 - Structural Plan : <u>1st New Diversion Dam in Mae Klong basin, 2nd Rising the Pasak dam</u>
 - Nonstructural Plan : <u>Utilization of inactive storage in Srinagarind dam</u> <u>Using Exixsting Canal(PaPa Canal)</u>

→ Considering the possibility of securing water resources and connectivity with new project,

construction of a new diversion dam is suggested for priority project.

ltem			Specification	Remark
New		Roller Gate	W13.0 x H6.0 x 9EA	
Diversion Dam	Ν	lavigation Lock	B22.0 x L252.6	
	Design	water diversion(m ³ /s)	12.7	
Diversion System	Diversion Channel Gate		W2.0 x H3.0 x 4EA	
	Diversion channel	Length(km)	71.0	Tha Pha \sim WTP
		Slope(%)	0.001	

- Project cost: 15,436 Mil.Baht (B/C = 1.33 , NPV = 5,028 Mil.Baht)

ขอบคุณ Thank You